Immersed Boundary Methods

نویسندگان

  • Rajat Mittal
  • Gianluca Iaccarino
چکیده

The term “immersed boundary method” was first used in reference to a method developed by Peskin (1972) to simulate cardiac mechanics and associated blood flow. The distinguishing feature of this method was that the entire simulation was carried out on a Cartesian grid, which did not conform to the geometry of the heart, and a novel procedure was formulated for imposing the effect of the immersed boundary (IB) on the flow. Since Peskin introduced this method, numerous modifications and refinements have been proposed and a number of variants of this approach now exist. In addition, there is another class of methods, usually referred to as “Cartesian grid methods,” which were originally developed for simulating inviscid flows with complex embedded solid boundaries on Cartesian grids (Berger & Aftosmis 1998, Clarke et al. 1986, Zeeuw & Powell 1991). These methods have been extended to simulate unsteady viscous flows (Udaykumar et al. 1996, Ye et al. 1999) and thus have capabilities similar to those of IB methods. In this review, we use the term immersed boundary (IB) method to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries. Furthermore, this review focuses mainly on IB methods for flows with immersed solid boundaries. Application of these and related methods to problems with liquid-liquid and liquid-gas boundaries was covered in previous reviews by Anderson et al. (1998) and Scardovelli & Zaleski (1999). Consider the simulation of flow past a solid body shown in Figure 1a. The conventional approach to this would employ structured or unstructured grids that conform to the body. Generating these grids proceeds in two sequential steps. First, a surface grid covering the boundaries b is generated. This is then used as a boundary condition to generate a grid in the volume f occupied by the fluid. If a finite-difference method is employed on a structured grid, then the differential form of the governing equations is transformed to a curvilinear coordinate system aligned with the grid lines (Ferziger & Peric 1996). Because the grid conforms to the surface of the body, the transformed equations can then be discretized in the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

Modelling of the Dynamics of an immersed body in a microchannel with stenosis using the immersed boundary method

In the present study, the combination of lattice Boltzmann and immersed boundary methods is used to simulate the motion and deformation of a flexible body. Deformation of the body is studied in microchannel with stenosis and the effect of the flexibility changes on its deformation is investigated. The obtained results in the present manuscript show that by increasing the elasticity modulus, the...

متن کامل

Implicit second-order immersed boundary methods with boundary mass

The immersed boundary method is a computational framework for problems involving the interaction of a fluid and immersed elastic structures. Immersed boundary computations typically evaluate the elastic forces explicitly in the configuration of the immersed elastic structure. In many applications this results in a severe restriction on the time step. We present a semi-implicit and a fully impli...

متن کامل

A Comparison of Implicit Solvers for the Immersed Boundary Equations

Explicit time discretizations of the Immersed Boundary method are known to require small timesteps to maintain stability. A number of implicit methods have been introduced to alleviate this restriction to allow for a more efficient method, but many of these methods still have a stability restriction on the timestep. Furthermore, almost no comparisons have appeared in the literature of the relat...

متن کامل

From Immersed Boundary Method to Immersed Continuum Method

The objective of this paper is to present an overview of the newly proposed immersed continuum method in conjunction with the traditional treatment of fluidstructure interaction problems, the immersed boundary method, the extended immersed boundary method, the immersed finite element method, and the fictitious domain method. In particular, the key aspects of the immersed continuum method in com...

متن کامل

Removing the Stiffness of Elastic Force from the Immersed Boundary Method for the 2D Stokes Equations

The Immersed Boundary method has evolved into one of the most useful computational methods in studying fluid structure interaction. On the other hand, the Immersed Boundary method is also known to suffer from a severe timestep stability restriction when using an explicit time discretization. In this paper, we propose several efficient semiimplicit schemes to remove this stiffness from the Immer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004